Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642630

RESUMO

The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.


Assuntos
Envelhecimento/metabolismo , Jejum/metabolismo , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Transcriptoma , Envelhecimento/genética , Animais , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Proteólise
3.
PLoS One ; 11(10): e0164239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711219

RESUMO

The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.


Assuntos
Autofagia , Drosophila/genética , Sistema Nervoso/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Jejum , Feminino , Genótipo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Longevidade , Masculino , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
4.
Autophagy ; 12(11): 2256-2257, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27560096

RESUMO

Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes.


Assuntos
Autofagia , Lesões Encefálicas Traumáticas/patologia , Drosophila melanogaster/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Transdução de Sinais
5.
Sci Rep ; 6: 25252, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27143646

RESUMO

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI. Here we report the development of a severe and mild-repetitive TBI model using Drosophila. Using this system, key features that are typically found in mammalian TBI models were also identified in flies, including the activation of inflammatory and autophagy responses, increased Tau phosphorylation and neuronal defects that impair sleep-related behaviors. This novel injury paradigm demonstrates the utility of Drosophila as an effective tool to validate genetic and environmental factors that influence the whole animal response to trauma and to identify prospective therapies needed for the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Drosophila , Animais
6.
PLoS One ; 10(7): e0132768, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26182057

RESUMO

Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.


Assuntos
Envelhecimento/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Olfato/genética , Envelhecimento/metabolismo , Animais , Autofagia/genética , Ritmo Circadiano/genética , Corte , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Masculino , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos , Fatores Sexuais
7.
PLoS Genet ; 9(12): e1003970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339790

RESUMO

Obesity is defined by excessive lipid accumulation. However, the active mechanistic roles that lipids play in its progression are not understood. Accumulation of ceramide, the metabolic hub of sphingolipid metabolism, has been associated with metabolic syndrome and obesity in humans and model systems. Here, we use Drosophila genetic manipulations to cause accumulation or depletion of ceramide and sphingosine-1-phosphate (S1P) intermediates. Sphingolipidomic profiles were characterized across mutants for various sphingolipid metabolic genes using liquid chromatography electrospray ionization tandem mass spectroscopy. Biochemical assays and microscopy were used to assess classic hallmarks of obesity including elevated fat stores, increased body weight, resistance to starvation induced death, increased adiposity, and fat cell hypertrophy. Multiple behavioral assays were used to assess appetite, caloric intake, meal size and meal frequency. Additionally, we utilized DNA microarrays to profile differential gene expression between these flies, which mapped to changes in lipid metabolic pathways. Our results show that accumulation of ceramides is sufficient to induce obesity phenotypes by two distinct mechanisms: 1) Dihydroceramide (C14:0) and ceramide diene (C14:2) accumulation lowered fat store mobilization by reducing adipokinetic hormone- producing cell functionality and 2) Modulating the S1P: ceramide (C14:1) ratio suppressed postprandial satiety via the hindgut-specific neuropeptide like receptor dNepYr, resulting in caloric intake-dependent obesity.


Assuntos
Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo , Síndrome Metabólica/genética , Obesidade/metabolismo , Esfingosina/análogos & derivados , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Apetite/genética , Cromatografia Líquida , Modelos Animais de Doenças , Drosophila melanogaster , Ingestão de Energia/genética , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Mutação , Obesidade/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Espectrometria de Massas por Ionização por Electrospray , Esfingosina/metabolismo
8.
Autophagy ; 7(6): 572-83, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325881

RESUMO

Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Doença de Alzheimer/metabolismo , Animais , Animais Geneticamente Modificados , Autofagia , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Detergentes/farmacologia , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Microscopia Eletrônica de Transmissão/métodos , Modelos Biológicos , Modelos Genéticos , Mutação , Proteína Sequestossoma-1 , Fatores de Tempo
9.
Mol Cell ; 38(2): 265-79, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20417604

RESUMO

There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation and can occur selectively for substrates, including aggregated proteins. It remains unclear, however, whether starvation-induced and selective macroautophagy share identical adaptor molecules to capture their cargo. Here, we report that Alfy, a phosphatidylinositol 3-phosphate-binding protein, is central to the selective elimination of aggregated proteins. We report that the loss of Alfy inhibits the clearance of inclusions, with little to no effect on the starvation response. Alfy is recruited to intracellular inclusions and scaffolds a complex between p62(SQSTM1)-positive proteins and the autophagic effectors Atg5, Atg12, Atg16L, and LC3. Alfy overexpression leads to elimination of aggregates in an Atg5-dependent manner and, likewise, to protection in a neuronal and Drosophila model of polyglutamine toxicity. We propose that Alfy plays a key role in selective macroautophagy by bridging cargo to the molecular machinery that builds autophagosomes.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Fatores de Transcrição/genética
10.
Basic Res Cardiol ; 104(2): 169-80, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19242643

RESUMO

Autophagy is a critical cellular housekeeping process that is essential for removal of damaged or unwanted organelles and protein aggregates. Under conditions of starvation, it is also a mechanism to break down proteins to generate amino acids for synthesis of new and more urgently needed proteins. In the heart, autophagy is upregulated by starvation, reactive oxygen species, hypoxia, exercise, and ischemic preconditioning, the latter a well-known potent cardioprotective phenomenon. The observation that upregulation of autophagy confers protection against ischemia/reperfusion injury and inhibition of autophagy is associated with a loss of cardioprotection conferred by pharmacological conditioning suggests that the pathway plays a key role in enhancing the heart's tolerance to ischemia. While many of the antecedent signaling pathways of preconditioning are well-defined, the mechanisms by which preconditioning and autophagy converge to protect the heart are unknown. In this review we discuss mechanisms that potentially underlie the linkage between cardioprotection and autophagy in the heart.


Assuntos
Autofagia/fisiologia , Citoproteção/fisiologia , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos
11.
Autophagy ; 4(4): 500-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18326940

RESUMO

Autophagy is involved in cellular clearance of aggregate-prone proteins, thereby having a cytoprotective function. Studies in yeast have shown that the PI 3-kinase Vps34 and its regulatory protein kinase Vps15 are important for autophagy, but the possible involvement of these proteins in autophagy in a multicellular animal has not been addressed genetically. Here, we have created a Drosophila deletion mutant of vps15 and studied its role in autophagy and aggregate clearance. Homozygous Deltavps15 Drosophila died at the early L3 larval stage. Using GFP-Atg8a as an autophagic marker, we employed fluorescence microscopy to demonstrate that fat bodies of wild type Drosophila larvae accumulated autophagic structures upon starvation whereas vps15 fat bodies showed no such response. Likewise, electron microscopy revealed starvation-induced autophagy in gut cells from wild type but not Deltavps15 larvae. Fluorescence microscopy showed that Deltavps15 mutant tissues accumulated profiles that were positive for ubiquitin and Ref(2)P, the Drosophila homolog of the sequestosome marker SQSTM1/p62. Biochemical fractionation and Western blotting showed that these structures were partially detergent insoluble, and immuno-electron microscopy further demonstrated the presence of Ref(2)P positive membrane free protein aggregates. These results provide the first genetic evidence for a function of Vps15 in autophagy in multicellular organisms and suggest that the Vps15-containing PI 3-kinase complex may play an important role in clearance of protein aggregates.


Assuntos
Autofagia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ligação a DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Deleção de Genes , Larva/metabolismo , Larva/ultraestrutura , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Inanição , Ubiquitina/metabolismo , Proteína VPS15 de Distribuição Vacuolar
12.
Autophagy ; 4(2): 176-84, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18059160

RESUMO

Autophagy is involved with the turnover of intracellular components and the management of stress responses. Genetic studies in mice have shown that suppression of neuronal autophagy can lead to the accumulation of protein aggregates and neurodegeneration. However, no study has shown that increasing autophagic gene expression can be beneficial to an aging nervous system. Here we demonstrate that expression of several autophagy genes is reduced in Drosophila neural tissues as a normal part of aging. The age-dependent suppression of autophagy occurs concomitantly with the accumulation of insoluble ubiquitinated proteins (IUP), a marker of neuronal aging and degeneration. Mutations in the Atg8a gene (autophagy-related 8a) result in reduced lifespan, IUP accumulation and increased sensitivity to oxidative stress. In contrast, enhanced Atg8a expression in older fly brains extends the average adult lifespan by 56% and promotes resistance to oxidative stress and the accumulation of ubiquitinated and oxidized proteins. These data indicate that genetic or age-dependent suppression of autophagy is closely associated with the buildup of cellular damage in neurons and a reduced lifespan, while maintaining the expression of a rate-limiting autophagy gene prevents the age-dependent accumulation of damage in neurons and promotes longevity.


Assuntos
Autofagia/fisiologia , Drosophila/fisiologia , Imunidade Inata/fisiologia , Longevidade/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Estresse Oxidativo/fisiologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Autofagia/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica , Imunidade Inata/genética , Longevidade/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxidantes/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo
13.
Methods Enzymol ; 451: 639-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19185743

RESUMO

The process of macroautophagy occurs in most eukaryotic cells and serves as the main recycling mechanism for the elimination of excess cytoplasmic components. The pathway is upregulated under a wide range of stress-related conditions and basal levels of autophagy are critical for the clearance of age-associated cellular damage, which can accumulate in long-lived, nondividing cells such as neurons. Traditionally, activation of autophagy has been measured by the microscopic observation of newly formed autophagosomes or by monitoring the further modification of the LC3-I protein to the LC3-II isoform by Western blot analysis. However, using these methods to quantitatively determine autophagic activity that occurs in complex tissues over an entire life span has been a technical challenge and difficult to consistently reproduce. We have shown that Western analysis of protein substrates normally cleared by the pathway can be used to make quantitative estimates of autophagy occurring in tissues such as the adult Drosophila nervous system. By examining the profile of insoluble ubiquitinated proteins (aggregated proteins) we have found that an age-dependent decline in pathway flux or genetic defects in critical autophagic genes can result in the concomitant buildup of substrates that are normally targeted by autophagy to the lysosome. Further, we have found that increasing Atg81a expression (a key rate-limiting component of the pathway) during the time in which autophagy is normally suppressed prevents the age-dependent accumulation of insoluble ubiquitinated proteins in neurons. This technique, as well as the detection of proteins damaged by reactive carbonyl groups, can also be used to measure autophagic activity in both normal and genetically altered flies during the aging process or following their acute exposure to oxidants.


Assuntos
Autofagia/fisiologia , Bioensaio/métodos , Drosophila melanogaster , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Humanos , Ubiquitina/metabolismo
14.
Autophagy ; 3(5): 499-501, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17617737

RESUMO

Defects in pathways that direct cellular components to the lysosome for degradation are often linked with a decrease in viability and with progressive disorders. Previously we had shown that blue cheese (bchs: Drosophila homologue of human Alfy) mutations lead to reduced longevity and the accumulation of ubiquitinated neural aggregates. A genetic modifier screen based on overexpression of Bchs in the eye was used to identify several potential genetic interactions, which included autophagic and endocytic trafficking genes as well as cytoskeletal and motor proteins and members of the SUMO and ubiquitin signaling pathways. We found that mutations in several of the genes identified in the screen also result in bchs-like phenotypes, including a reduction in adult lifespan and changes in ubiquitinated protein profiles. In addition, we show here that Bchs modifiers belonging to the autophagic and trans-Golgi trafficking pathways also display defects in adult starvation response. Our data further support a role for Bchs/Alfy in the autophagic pathway and strongly indicate that autophagy plays an important role in aging and stress response.


Assuntos
Envelhecimento/metabolismo , Drosophila/metabolismo , Lisossomos/metabolismo , Animais , Autofagia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insetos , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais
15.
Genetics ; 176(2): 1283-97, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17435236

RESUMO

Defects in lysosomal trafficking pathways lead to decreased cell viability and are associated with progressive disorders in humans. Previously we have found that loss-of-function (LOF) mutations in the Drosophila gene blue cheese (bchs) lead to reduced adult life span, increased neuronal death, and widespread CNS degeneration that is associated with the formation of ubiquitinated-protein aggregates. To identify potential genes that participate in the bchs functional pathway, we conducted a genetic modifier screen based on alterations of an eye phenotype that arises from high-level overexpression of Bchs. We found that mutations in select autophagic and endocytic trafficking genes, defects in cytoskeletal and motor proteins, as well as mutations in the SUMO and ubiquitin signaling pathways behave as modifiers of the Bchs gain-of-function (GOF) eye phenotype. Individual mutant alleles that produced viable adults were further examined for bchs-like phenotypes. Mutations in several lysosomal trafficking genes resulted in significantly decreased adult life spans and several mutants showed changes in ubiquitinated protein profiles as young adults. This work represents a novel approach to examine the role that lysosomal transport and function have on adult viability. The genes characterized in this study have direct human homologs, suggesting that similar defects in lysosomal transport may play a role in human health and age-related processes.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina/metabolismo , Animais , Elementos de DNA Transponíveis , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Larva , Expectativa de Vida , Microscopia Confocal , Mutação , Degeneração Neural/genética , Transporte Proteico , Pupa
16.
Development ; 132(1): 155-64, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15576402

RESUMO

Mutations in the Drosophila retained/dead ringer (retn) gene lead to female behavioral defects and alter a limited set of neurons in the CNS. retn is implicated as a major repressor of male courtship behavior in the absence of the fruitless (fru) male protein. retn females show fru-independent male-like courtship of males and females, and are highly resistant to courtship by males. Males mutant for retn court with normal parameters, although feminization of retn cells in males induces bisexuality. Alternatively spliced RNAs appear in the larval and pupal CNS, but none shows sex specificity. Post-embryonically, retn RNAs are expressed in a limited set of neurons in the CNS and eyes. Neural defects of retn mutant cells include mushroom body beta-lobe fusion and pathfinding errors by photoreceptor and subesophageal neurons. We posit that some of these retn-expressing cells function to repress a male behavioral pathway activated by fruM.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Processamento Alternativo , Animais , Comportamento Animal , Sistema Nervoso Central/embriologia , Cruzamentos Genéticos , DNA Complementar/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Modelos Genéticos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Mutação Puntual , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fatores Sexuais , Comportamento Sexual Animal , Fatores de Transcrição/genética
17.
J Neurosci ; 23(4): 1254-64, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12598614

RESUMO

A common feature of many human neurodegenerative diseases is the accumulation of insoluble ubiquitin-containing protein aggregates in the CNS. Although Drosophila has been helpful in understanding several human neurodegenerative disorders, a loss-of-function mutation has not been identified that leads to insoluble CNS protein aggregates. The study of Drosophila mutations may identify unique components that are associated with human degenerative diseases. The Drosophila blue cheese (bchs) gene defines such a novel degenerative pathway. bchs mutants have a reduced adult life span with the age-dependent formation of protein aggregates throughout the neuropil of the CNS. These inclusions contain insoluble ubiquitinated proteins and amyloid precursor-like protein. Progressive loss of CNS size and morphology along with extensive neuronal apoptosis occurs in aged bchs mutants. BCHS protein is widely expressed in the cytoplasm of CNS neurons and is present over the entire length of axonal projections. BCHS is nearly 3500 amino acids in size, with the last 1000 amino acids consisting of three functional protein motifs implicated in vesicle transport and protein processing. This region along with previously unidentified proteins encoded in the human, mouse, and nematode genomes shows striking homology along the full length of the BCHS protein. The high degree of conservation between Drosophila and human bchs suggests that study of the functional pathway of BCHS and associated mutant phenotype may provide useful insights into human neurodegenerative disorders.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Proteínas de Membrana , Degeneração Neural/etiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Apoptose , Sequência Conservada , Progressão da Doença , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Feminino , Genes de Insetos , Humanos , Immunoblotting , Corpos de Inclusão/química , Masculino , Mutação , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/análise , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Homologia de Sequência de Aminoácidos , Ubiquitina/análise , Ubiquitina/imunologia
18.
Dev Biol ; 245(2): 315-28, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11977984

RESUMO

Loss-of-function mutations affecting the dissatisfaction (DSF) nuclear receptor alter both sexual behavior and the sex-specific nervous system in Drosophila. As a step toward understanding the way DSF controls development and function of the nervous system, we have analyzed the regulatory activities of the DSF protein. DSF prefers an atypical DNA half site, AAGTCA. Wild-type DSF, but not the point mutant DSF(7), monomerically binds and represses reporter constructs bearing this site. DSF also contains an atypically long, 356-amino-acid hinge separating its DNA-binding domain (DBD) and ligand-binding domain (LBD). The hinge contains at least two functions: a region that drastically lowers DNA-binding efficiency in vitro, and an amino-terminal repressive domain. The DBD and LBD of DSF, along with major portions of the hinge, are highly conserved in other insects. Ectopic expression of DSF in Drosophila imaginal discs results in developmental disruptions in disc-derived tissues, disruptions which are largely suppressed when DSF is fused to the VP16 activation domain, consistent with a repressive role for DSF. Finally, when tethered to DNA, DSF's hinge and LBD regions act as strong transcriptional repressors in multiple larval and pupal tissues, including many DSF-expressing tissues. These results suggest DSF can repress transcription in vivo, that repression is largely responsible for its ectopic expression phenotypes, and that repression may be a key component of normal DSF function.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Sequência Conservada/genética , DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Extremidades/embriologia , Olho/embriologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...